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A B S T R A C T

Context: Function Point Analysis (FPA) provides an objective, comparative measure for size estimation in the
early stage of software development. When practicing FPA, analysts typically abide by the following steps:
data function (DF) extraction, transactional function extraction, function type classification and adjustment
factor determination. However, due to lack of approach and tool support, these steps are usually conduct by
human efforts in practice. Related approaches can hardly be applied in the FPA due to the following three
challenges, i.e., FPA rule-driven extraction, domain-specific parsing, and expensive labeled resources.
Objective: In this paper, we aim to automate the extraction of DFs, which is the starting and fundamental
step in FPA.
Method: We propose an automated approach named DEX to extract data functions from textual requirements.
Specifically, DEX introduces the popularly-used conditional random field (CRF) model to predict the boundary
of a data function. Besides, DEX employs the bootstrapping-based algorithm and DF-oriented language model
to further boost the performance.
Results: We evaluate DEX from two aspects: evaluation on a real industrial dataset and a manual review by
domain experts. The evaluation on the real industrial dataset shows that DEX could achieve 80% precision,
84% recall, and 82% F1, and outperforms three state-of-the-art baselines. The expert review suggests that DEX
could increase 16% precision and 13% recall, compared with those produced by engineers.
Conclusion: DEX could achieve promising results under a small number of labeled requirements and outper-
form the state-of-the-art approaches. Moreover, DEX could help engineers produce more accurate and complete
DFs in the industrial environment.
. Introduction

In industrial practice, it is desirable to have a reliable size estima-
ion method before software systems are built, so that the software
evelopment activities can be well planned and quantitatively managed
1]. One of the most intensively used approaches in the early stage
s Function Point Analysis (FPA) that has been well developed over
0 years. FPA provides a measure of software size in function point
hat is defined as ‘‘a synthetic metric that is comprised of the weighted
otals of the inputs, outputs, inquiries, logical files or user data groups, and
nterfaces belonging to an application’’ [2]. With the counted function
oints, reasonable size estimations can be measured, and indirect size
stimations can be calculated [3]. Based on the FPA method, many
easurement method standards, such as the IFPUG (ISO/IEC 20926),
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MKii(ISO/IEC 20968), NESMA (ISO/IEC 24570), COSMIC (ISO/IEC
19761) and FiSMA (ISO/IEC 29881), have been presented to support
the software size estimation.

When practicing FPA, one of the most important steps is extracting
‘‘function’’ from requirements. Unfortunately, FPA has its unsolved
problems that prevent it from being a valid measurement method with
widespread acceptance. One significant problem is that functions need
to be extracted from requirements documents. These documents are
often totaling hundreds of pages, and the process heavily relies on
human measurement to read those documents [4]. Another problem is
that the estimation results are subjective to some degree. Analyzing and
extracting functions follow a set of standard FPA rules, which are open
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to interpretation on many occasions, thus they often produce incon-
sistent estimation results [5]. The inconsistent estimation results may
occur even in the same organization. Low and Jeffery [6] reported that
30% variance of estimation results was caused within one organization,
and more than 30% variance was caused across organizations. There-
fore, it is important to propose approaches to promote the automation,
effectiveness, and quality of function point analysis. On the one hand,
the automated function extraction approach can reduce the amount
of manual work. On the other hand, automation approach could help
preserve the extracted functions to be objective and unbiased [5].

A function in FPA is the smallest unit of activity that is meaningful
to the users. According to the IFPUG standard, functions are classified
into two categories, i.e., the data function (DF) and the transactional
function. Specifically, the DFs represent the functionality provided to
the user to meet internal and external data storage requirements [1,7].
They are described in requirements in the form of noun phrases. The
transaction functions represent the functionality provided to the users
to input and retrieve data from the application. They are typically
described as ‘‘verb + DF’’ in requirements. In industrial practice, func-
tion extraction typically begins with the DFs, and then transactional
functions by analyzing the operators acting on the DFs. Therefore, the
extraction of DFs is the fundamental step, and mistakenly extracting
them will lead to greater bias than the transactional ones [8]. Moreover,
the concerns of extracting DFs are different from the transaction func-
tions (e.g., ‘‘breaking elementary process’’ issue and ‘‘meaningless to
users’’ issue when extracting transactional functions [5]). In this paper,
we focus on the DF extraction.1

Requirements are typically written in natural language. Due to
the complexity and ambiguity of natural language, there exist few
studies to automatically extract DFs from textual requirements. The
most related work is the approach proposed by Adem et al. [4] which
leverages pre-defined rules to extract functions from requirements.
However, it needs requirements in the format of a goal-scenario model
[9] rather than free-format natural language. In addition, given that the
DFs are noun phrases, there also exist studies in other fields, such as
general entity extraction [10–12] and glossary term extraction [13,14].
However, these studies in the literature could not be effectively applied
to extract DFs from textual requirements due to the following two
aspects.

FPA rule-driven extraction. According to the FPA rules, DFs are
derived from the functionalities provided to the user to meet internal
and external data storage requirements. They are the business objects
that are stored and maintained by the software systems [1]. In such
cases, the entities or glossary terms extracted from previous studies
[10–14] normally go beyond the scope of DFs. Take the requirement
‘‘I would like to receive the credit card bill when I open the mobile
application in IOS12.4’’ as an example. Fig. 1 shows the four entities
extracted by a popularly-used entity extractor, Stanford CoreNLP.2
Among the four entities, only the ‘‘credit card bill’’ is the DF, since the
other three entities describe general concepts that will not be stored
and maintained by the software systems based on the requirement
description. In the FPA, each DF will be calculated as a certain number
for function points. If we consider the four general entities extracted by
the existing methods as the DFs for the size estimation, it would lead to
over-estimated size [8]. Thus, it is desirable to design novel solutions
to accurately identify DFs from requirements.

Expensive labeling resources. There exist a plethora of machine
learning-based approaches to address the general term extraction prob-
lem [10,11] which could be potentially applicable to the software
requirements. However, these approaches rely on a large volume of
labeled resources to train a promising model. It is expensive to offer
sufficient labeled data since it requires FPA experts to read and label

1 The extraction of transactional functions is discussed in Section 7.1.
2 https://stanfordnlp.github.io/Core.
2

Fig. 1. The entities extracted by Stanford CoreNLP.

requirements containing enormous textual contents. With inadequate
labeled data, the existing machine learning-based approaches would
lead to inefficient models. Apart from the labeled data, there exists
a large number of unlabeled data, and how to utilize the unlabeled
requirements is valuable to explore.

In FPA, analysts typically starts with the DF extraction. Then, an-
alysts recognize the operations on the DFs to produce transactional
functions, and classify each function into specific type. In the end,
analysts determine the value adjustment factor to produce the fi-
nal size estimation [2]. However, due to lack of effective automated
tool support, these steps are usually conduct by human efforts in
practice. In this study, we focus on the starting and fundamental
step, DF extraction, in FPA. We propose an automated Data Func-
tion EXtraction approach (named DEX) to extract DFs from textual
requirements. Specifically, DEX takes the DF extraction as the sequence
tagging task, and introduces Conditional Random Field (CRF) [15],
which could consider the contextual information. The basic assumption
is that DFs normally appear together with the indicative contexts. For
example, there is a requirement ‘‘I would like to receive the credit card
bill when I open the mobile application in IOS12.4’’, and corresponding
DF is ‘‘credit card bill’’ which could be easier to extract with foregoing
verb ‘‘receive’’ and following word ‘‘when’’. Not limited to the example,
the contextual information usually provides clues for DF extraction.
Motivated by this observation, DEX extracts the contextual features
for each word, and employs CRF to capture the regularities from the
training data for the DF extraction. Besides, to solve the problem of
expensive labeling resources, DEX further adopts a semi-supervised
technique and DF-oriented language model that leverages unlabeled
data to boost the performance. DEX consists of four steps: (1) CRF
instance building where DEX builds seeds and unlabeled instances from
labeled requirements and unlabeled requirements; (2) Bootstrapping
based CRF training where DEX trains the CRF model using boot-
strapping based algorithm; (3) DF-oriented language model training
using historical DFs; (4) DF extraction where DEX extracts DFs for
new-coming requirements.

We evaluate DEX on 3586 requirements from 20 on-going software
systems in a China Merchants Bank (CMB), one of the largest joint-stock
commercial banks in China, and compare DEX with three state-of-
the-art baseline approaches. The results show that DEX could achieve
80% precision, 84% recall, and 82% F1, and significantly outperform
the baseline approaches. Moreover, evaluation results also show that,
with the help of semi-supervised technique and DF-oriented language
model, unlabeled data can improve the extraction performance by 2%
precision, 26% recall, and 16% F1. This further proves the usefulness
of unlabeled data for DF extraction. Besides, we conduct an expert
review to investigate the usefulness of DEX in a real-world application
scenario. The results illustrate that DEX could achieve 82% precision
and 83% recall on 11 projects, and outperform the manual extraction
by engineers.

The major contributions of this paper are as follows:

• We propose a novel approach DEX to automatically extract DFs
from textual requirements.

• We provide an effective way to train the DF extraction model with
a small amount of labeled data and unlabeled domain-specific
data, which can motivate other tasks with few labeled data.

https://stanfordnlp.github.io/Core
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• We evaluate our approach on an industrial dataset and a real-
world application scenario, and the results are promising.

• We make all the source code publicly accessible,3 which could be
applied to other industrial settings and related tasks.

The remainders of the paper are organized as follows: Section 2
ntroduces the background. Section 3 introduces the related work and
heir limitations. Section 4 elaborates the approach. Section 5 presents
he experiment design. Section 6 describes the results. Section 7 dis-
usses how to apply DEX to transactional function extraction, learned
essons, and threats to validity. Section 8 concludes our work.

. Background

In this section, we introduce the nature of the function and the
echniques used in the proposed approach.

.1. The nature of function

FPA is firstly defined by Allan Albrech in 1979, which derived a
unctional size of product value distinct and disassociated from lines of
ode, technology, or software language [1]. In FPA, the requirements
re modeled as a set of functions where each function maps to end-
ser business functionality. Once a function is identified, it will be
ategorized into a function type and assigned a specific number of
unction points according to different FPA standards. The number of
unction points is finally regarded as the size estimation.

The need for maintaining FPA counting practices led to founding
he IFPUG,4 which maintains the counting practices manual, provides
uidelines and examples, and oversees the standardization of the mea-
urement method. The standard maintained by IFPUG is the first-
eneration functional size measurements and has been an ISO standard
ISO/IEC 20926). In the IFPUG standard, the requirements are modeled
s two types of functions: (1) DFs and transactional functions. A DF
epresents the functionality provided to the user to meet internal and
xternal data storage requirements. The DF is a user-identifiable noun
hrase within the requirements. A transaction function represents the
unctionality provided to the user to input and retrieve data from
he application. They are the unique and user-recognizable elementary
rocesses that satisfy functional user requirements and are expressed as
he ‘‘verb + DF’’ in requirements. For example, given a DF ‘‘customer in-
ormation’’, the corresponding transaction functions would typically be
‘add customer information’’, ‘‘delete customer information’’, ‘‘modify
ustomer information’’ and ‘‘query customer information’’.

Given the temporal order when analyzing functions, DF extraction
s the fundamental step. Besides, compared with transaction functions,
Fs will be calculated as more function points. For example, in the

FPUG standard, the ILF and EIF are calculated as 10 and 7 function
oints respectively, while the EI, EO, EQ are calculated as 4, 5, 4
unction points respectively [2]. Therefore, mistake extraction of DFs
ill lead to greater bias than the transactional ones [8].

Currently, DFs highly rely on manual extraction by experts, which
s quite time-consuming and labor-intensive. Moreover, the manually
xtracted DFs are often biased by different people and vary consider-
bly in estimation quality. Therefore, an automated solution to extract
Fs is badly desired.

.2. Technical background

We introduce two main techniques used in the proposed approach
n the following.

3 https://github.com/iscaslmy/DEX.
4 https://www.ifpug.org/.
3

e

2.2.1. Sequence tagging and conditional random field
Sequence tagging is a widely-used technique that is to predict the

tag sequence given the input sequence [16]. Let 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4,… ,
𝑛) be the input sequence where 𝑥𝑖 is the element in the input se-
uence 𝑋. It aims at finding the most optimal label sequence 𝑌 =
𝑦1, 𝑦2, 𝑦3, 𝑦4..., 𝑦𝑛) given 𝑋 where 𝑦𝑖 is the label given to corresponding
𝑖. The sequence tagging task could be solved with many machine
earning algorithms such as Maximum Entropy Model [17], Hidden
arkov Model [18], and CRF [15].

Specifically, CRF is a class of sequence tagging methods often
pplied in many pattern recognition and machine learning tasks. CRF
s a type of discriminative undirected probabilistic graphical model.
or the sequential data, whereas the typical discrete classifiers that
redict a label for a single sample without considering ‘‘neighboring’’
nformation, CRF takes the input as the ordered sequence and predicts
ach label considering the previous elements. Thus, CRF is more suit-
ble for tasks with abundant contextual information. Considering that
atural language is a typical sequence of words, CRF has been popularly
pplied to many natural language processing tasks such as part-of-
peech tagging [19], text chunking [20] and named entity recognition
21].

.2.2. Semi-supervised learning and bootstrapping
Semi-supervised learning is a category of machine learning tech-

iques that makes use of not only labeled data but also unlabeled data
or training. It is an intermediate type of machine learning technique
hat is between supervised learning and unsupervised learning. Com-
ared with supervised learning, it needs far less labeled data that is
xpensive to collect. Compared with unsupervised learning, it does not
equire the data following specific apriori assumptions, which enlarges
ts application scenarios. Due to its advantages in lower-level of human
ffort and higher accuracy, semi-supervised learning has gained great
nterests in both theory and practice [22].

Bootstrapping (also known as self-training or self-teaching) is a
ommonly used technique of semi-supervised learning [23]. In boot-
trapping, a classifier is firstly trained with a small amount of labeled
ata. The classifier is then used to classify the unlabeled data. The most
onfident unlabeled instances, together with their predicted labels,
re added to the training set. The classifier is re-trained, and the
rocedure is repeated until reaching promising results. Bootstrapping
s a wrapper algorithm that could combine with different machine
earning approaches depending on the specific tasks.

. Related work

In this section, we firstly introduce the existing approaches for auto-
ated function point analysis. Considering that the function extraction

s similar to the term extraction in the requirements engineering and
atural language processing (NLP) fields, we further introduce the
utomated approaches for term extraction.

.1. Function point analysis

Due to the significant challenges in understanding natural language
equirements, few studies have addressed the automated extraction
f functions from textual requirements. Adem et al. [4] proposed a
ule-based approach to extract function points from requirements that
re written in the goal and scenario model, e.g. ‘‘verb + target +
irection + way’’, however, applying this method requires modeling
ree-format requirements into the goal-scenario model, which might
e more time-consuming than the standard counting procedure. Thus,
t is not practical for the software industry with a large volume of
rojects. To overcome that issue, we propose a learning-based approach
hat can automatically extract transaction functions from free-format
equirements text. Shi et al. [5] proposed an approach to automatically
xtract transactional functions from textual requirements. It firstly

https://github.com/iscaslmy/DEX
https://www.ifpug.org/
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trains a machine learning model to predict whether a word appears in
the transactional functions, and then constructs transactional functions
using the pre-defined rules. Differently, it focuses on the extraction of
the transactional functions rather than the data functions in our study.

Moreover, there are several studies for the automation of FPA from
design specifications or source code. Pow-Sang et al. [24] identified
function point logic files from UML class diagrams that made use of
association, composition, generalization, and association-class relation-
ships. Irawati et al. [25] provided mapping rules between function
point calculation and design documentation by referring to the informa-
tion of Use Case Diagram and Class Diagram and associations between
them. Edagawa and Akaike et al. [26] proposed a method to automat-
ically identify data and transaction functions from Web applications
using static code analysis. Ali SAG and Tarhan [27] derived UML
sequence Diagrams from functional execution traces at runtime with
the help of AspectJ technology and utilized it to measure the functional
size. These studies for FPA mainly targeted design specifications and
source code artifacts. Our study aims to automatically extract data
functions from textual requirements, which can facilitate the automatic
estimation of the system’s size in the early stage.

3.2. Term extraction

According to the techniques used in the approaches, we divide
them into two categories, i.e., linguistics based approaches and learning
based approaches. Specifically, linguistics based approaches implement
term extraction with text parsing (e.g., part-of-speech parsing and text
chunking) and linguistic rules. learning based approaches aim to train
models using machine learning algorithms and utilize the models for
future predictions. In the following, we introduce the existing studies
and their limitations of the two categories of approaches.

3.2.1. Linguistics based approaches
Typically, linguistics based approaches follow the following

pipeline. First, they parsed texts leveraging NLP techniques such as
part-of-speech parsing and text chunking. Second, they extract the
target terms using the pre-defined linguistic rules, e.g., part-of-speech
patterns and noun chunking. To our best knowledge, all the previous
studies for requirements belong to this group. Bourigault et al. [28]
described an approach for terminological noun phrases. With the part-
of-speech tags returned by the NLP toolkit, it is implemented by
regular expressions to extract certain combinations of noun phrases.
Dwarakanath et al. [29] used linguistic rules to identify process nouns,
abstract nouns, and auxiliary verbs from natural language require-
ments. It firstly parses part-of-speech tags to extract noun phrases and
verb phrases and then builds the linguistic rules to handle co-ordinating
conjunctions, adjectival modifiers, and nominalizations. Ménard et al.
[30] proposed an approach to extract domain-specific concepts from
business documents. It is implemented as a pipeline, including a candi-
date generation step based on part-of-speech patterns, several filtering
rules to filter out the irrelevant terms by heuristics. Johann et al. [31]
proposed an approach to extract key noun phrases and verb phrases
that are related to features from app descriptions and app reviews.
It first obtains part-of-speech tags using the NLP toolkit. Then it pre-
defined 18 part-of-speech patterns to extract phrases. Arora et al. [13]
developed an approach for extracting glossary terms and their related
terms from requirements documents. It firstly extracts the candidate
noun phrases via text chunking with the help of a popularly-used NLP
toolkit NLTK. Then, three linguistic heuristics are utilized to refine the
candidates.

When applying these approaches for data function extraction, there
are mainly two limitations. First, linguistics based approaches rely on
NLP toolkits to parse the requirements. Unfortunately, the NLP toolkits
are typically trained on the general corpus. They produce errors when
parsing some data functions that are named according to the business
domains. The errors produced by NLP toolkits will accumulate into
4

the linguistic based approaches, which makes negative impacts on the
performance. Second, the pre-defined linguistic rules are not suitable
for data function extraction. For example, the terms extracted by exist-
ing studies [29,31] refer to all general concepts contained in a textual
document. For example, glossary terms, defined as ‘‘salient terms in
documents’’ [13], aim to help stakeholders get familiar with business
knowledge the technical terminologies in a domain. It is observed
that the pre-defined rules are not for data functions, which results in
extracting general terms loosely related to the data functions. Besides, it
is expensive to rebuild rules for data functions whose extraction relies
on contextual information. Rather than the pipelined approach, DEX
directly trains a model to extract data functions, which could alleviate
the first limitation. For the second limitation, DEX trains the semi-
supervised CRF model using a small amount of labeled data to extract
candidate DFs, which could avoid the overload of manually building ex-
pert rules. Moreover, DEX leverages the DF-oriented language model to
filter out the irrelevant candidates, which could improve the precision
of the DF extraction.

3.2.2. Learning based approaches
Learning based approaches adopt the machine learning algorithm to

extract target information from texts, have been widely used for many
general entity extraction tasks. The popularly used method for general
entity extraction is supervised learning. For example, Finkel et al. [32]
trained a CRF model for named entity recognition (NER) with 10 hand-
crafted features. Lample et al. [10] presented a widely used LSTM-CRF
model for NER, which aims at extracting target information in terms
of sequence tagging and eliminates the need for feature engineering.
Chiu et al. [11] presented a novel neural network architecture to
extract named entities from the general corpus. It detects word-level
and character-level features using a hybrid bidirectional LSTM and CNN
architecture.

With the help of supervised learning, general entity extraction has
achieved promising performance under the condition of sufficient la-
beled data. However, supervised learning requires data labeling which
is a labor-intensive activity, especially in the domains requiring ex-
tensive expertise. Thus, a growing number of researches focused on
boosting performance by unlabeled data. Huang et al. [33] proposed
an approach to extracted domain-specific concepts based on a semi-
supervised CRF model. Using a small number of labeled data as seeds,
it iteratively expands training samples from unlabeled data by boot-
strapping. It is included in our study as the baseline approach. Sachan
et al. [34] investigated how to use unlabeled text data to improve the
performance of NER models. Specifically, they trained a bidirectional
language model (BiLM) on unlabeled data and transfer its weights
to pre-train a NER model with the same architecture as the BiLM,
which results in a better parameter initialization of the NER model.
Huang et al. [33] proposed an approach to extracted domain-specific
concepts based on a semi-supervised CRF model. Using a small number
of labeled data as seeds, it iteratively expands training samples from
unlabeled data by bootstrapping. It is also included as the baseline
approach. Sachan et al. [34] investigated how to use unlabeled text
data to improve the performance of NER. Specifically, they trained a
bidirectional language model (BiLM) on unlabeled data and transfer
its weights to pre-train a NER model with the same architecture as
the BiLM, which results in a better parameter initialization of the NER
model.

Different from our study, these approaches aim at extracting entities
from general corpus, and there exists a large volume of labeled and
unlabeled data to train the model. When coming to the FPA context, the
industrial requirements are ubiquitous difficult to access, and expensive
to label. Our approach aims to train a promising machine learning
model using limited requirements and labeling resources in the FPA
context.

The most related work is our previous study [12] which proposed an

approach RENE to extract entities from requirements. RENE leverages
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Fig. 2. The approach overview.
the LSTM-CRF network for entity extraction and utilizes a transfer
learning framework to train the LSTM-CRF network to overcome the
challenge of limited labeled data. Specifically, RENE pre-trains the
embedding and LSTM layers in the LSTM-CRF model to capture the
general knowledge using Wikipedia articles. Then, RENE fine-tunes
the embedding and LSTM layers to adapt to the specific requirements
domain using domain-specific unlabeled requirements. Different from
our previous study, DEX adopts a relatively lightweight approach for
data function extraction. We consider that DEX trains the model faster,
which could adapt to application scenarios that need to frequently
update the model.

4. Approach

We propose an automated approach DEX to extract DFs from textual
requirements. In general, DEX considers DF extraction as the sequence
tagging problem and trains the CRF model to avoid manually building
expert rules. Besides, DEX uses a bootstrapping based algorithm to
train the CRF model to solve the problem of limited labeling resources.
Then, using the historical DFs, DEX trains a DF-oriented language
model to rank the candidate DFs extracted by the CRF model. Fig. 2
illustrates the overview of DEX. It consists of four steps: (1) CRF
instance building where DEX builds seeds and unlabeled instances from
labeled requirements and unlabeled requirements; (2) Bootstrapping
based CRF training where DEX trains the CRF model using bootstrap-
ping based algorithm; (3) DF-oriented language model training using
historical DFs; (4) DF extraction where DEX extracts DFs for new-
coming requirements. The following introduces the details of each
step.

4.1. CRF instance building

In this step, DEX builds the training instances for the CRF model.
There are two sub-steps, i.e., building seeds from the labeled require-
ments and building unlabeled instances from unlabeled requirements.

Building seeds. Given a labeled requirement 𝑅𝑙, DEX first splits
the textual contents into sentences [𝑠1, 𝑠2,… , 𝑠𝑛] by period. For each
sentence 𝑠, DEX tokenize it into a word sequence 𝑠 = [𝑤1, 𝑤2, . . . , 𝑤𝑚]
using the NLP toolkit Stanford CoreNLP,5 where 𝑤𝑖 is the word in the
sentence. Please note that DEX does not remove the stop words from
sentences because we consider that they could provide information for

5 https://stanfordnlp.github.io/CoreNLP/.
5

predicting the locations of DFs.6 Due to that DEX aims to predict the
position of a DF, DEX extracts the features for each word in the word
sequence. We have mentioned that contextual information is helpful
for DF extraction. Therefore DEX extracts not only information of the
current word but also its forward and backward words in the sentence.
For each word, the feature vector captures a context window of 𝑛 words
to its forward and 𝑛 words to its backward. For example, the following
sub-sequence [𝑤𝑖−𝑛, 𝑤𝑖−(𝑛−1), . . . , 𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1, . . . , 𝑤𝑖+(𝑛−1), 𝑤𝑖+𝑛] is
the context window for current word w𝑖, where w𝑖−1 is its forward 1st
word, and w𝑖+1 is its backward 1st word. Please note that the context
window size 𝑛 is the hyper-parameter that could be tuned by users.
The default value of context window size 𝑛 is 4 in DEX. For each word
within the window, DEX extracts the following three features:

• Lexical Feature. The word itself. There might be common words
appearing before and after DFs that are beneficial for DF extrac-
tion.

• Part-of-Speech Feature. The part-of-speech of the word. Since the
DFs are noun phrases in the requirements, part-of-speech tagging
results can contribute to DF extraction.

• TF-IDF Feature. The TF-IDF [35] of the word. TF-IDF could in-
dicate the importance of the word and might have an impact
on the probability of its appearance in DFs. The TF and IDF are
calculated in the formula (1) and formula (2) respectively.

𝑇𝐹 (𝑤𝑖) =
#𝑤𝑖 𝑖𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

#𝑎𝑙𝑙 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡
(1)

𝐼𝐷𝐹 (𝑤𝑖) = log
#𝑎𝑙𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

(#𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤𝑖) + 1
(2)

If 𝑤𝑖 is at the beginning or the end of a sentence, and the contextual
words in the window are empty, DEX assigns the default feature values
(⟨𝑁𝑈𝐿𝐿⟩ for lexical feature, ⟨𝑁𝑈𝐿𝐿⟩ for part-of-speech features, 0 for
TF-IDF feature) to the empty words.

After that, the sentence 𝑠 is converted into a feature sequence
𝐹𝑙 = [𝑓 (𝑤1), 𝑓 (𝑤2),… , 𝑓 (𝑤𝑚)], where 𝑓 (𝑤𝑖) is extracted features for
each word. Then, DEX builds the corresponding label sequence 𝑌 =
[𝑦1, 𝑦2,… , 𝑦𝑛]. For each labeled requirement, there are corresponding
DFs which are manually labeled development teams and reviewed by
FPA experts (the process of building labeled requirements corpus is
described in Section 5.2). For each requirement, DEX splits each DF
into a word sequence 𝑊𝐷𝐹 , and determines DF’s location in 𝑠 by sub-
sequence matching. Then, DEX gives a label 𝑦𝑖 to each word 𝑤𝑖, which

6 Due to that our dataset is written in Chinese, we do not stem each word
into its morphological root like other languages, e.g., English.

https://stanfordnlp.github.io/CoreNLP/
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Fig. 3. A tagging example (translated into English).
indicates the location of DF in requirements. The 𝑦𝑖 in represented in
the BIOES format [36].

• I-label (Inside): The word is inside DF but not the first or last
within the DF.

• O-label (Outside): The word is outside DF.
• B-label (Beginning): The word is the beginning of DF.
• E-label (End): The word is the end of DF.
• S-label (Singleton): The singleton word is a DF.

For example, there is a sentence ‘‘I would like to receive the credit
card bill when I open the mobile application in IOS12.4’’, and the
corresponding DF is ‘‘credit card bill’’.7 The tagging result is shown in
Fig. 3. Finally, each pair ⟨𝐹𝑙 , 𝑌 ⟩ is considered a seed for CRF training.

Building unlabeled instances. Given an unlabeled requirement
𝑅𝑢, each sentence is also converted into a word sequence 𝑠 = [𝑤1, 𝑤2,
. . . , 𝑤𝑚]. Same as building seeds, DEX extracts contextual for each 𝑤𝑖
and builds the feature sequence 𝐹 = [𝑓 (𝑤1), 𝑓 (𝑤2),… , 𝑓 (𝑤𝑚)]. Given
that there are not DFs for 𝑅𝑢, DEX does not build the corresponding
label sequence. Each feature sequence ⟨𝐹 ⟩ is considered an unlabeled
instance.

4.2. Bootstrapping based CRF training

To overcome the challenge of expensive label resources, DEX adopts
a bootstrapping based algorithm for CRF training. In general, DEX
trains an initial CRF model using seeds, iteratively expands the seeds
from unlabeled instances, and retrains the CRF model until reaching
the stop criterion. The details of the bootstrapping based algorithm are
shown in Algorithm 1 First, DEX trains an initial CRF model (𝑀0) using
seeds (Line 1). Second, DEX expands seeds and re-trains the CRF model
iteratively in the way of bootstrapping (Line 3-15). In each iteration,
DEX utilizes the CRF model to predict the label sequence 𝑌𝑝 of each un-
labeled instance, and the CRF model calculates the confidence 𝑐𝑟𝑓𝑠𝑐𝑜𝑟𝑒
of prediction (Line 6). For each unlabeled instance, if the 𝑐𝑟𝑓𝑠𝑐𝑜𝑟𝑒 is
greater than or equal to the corresponding threshold (𝑇𝑐𝑟𝑓 ), it will be
added into the seeds (Line 7-9). When new instances are automatically
added to the training set during bootstrapping, it is critically important
that their labels are correct, otherwise, the performance of the CRF
model will rapidly deteriorate. This suggests that DEX should employ
a high threshold to add the instances with high confidences into the
training set. On the other hand, a high threshold often yields a few
new instances, which can cause the bootstrapping process to sputter
and halt. In order to balance these competing demands, DEX uses a
‘‘sliding threshold’’ strategy. DEX sets a high 𝑇𝑐𝑟𝑓 in the beginning,
and decreases 𝑇𝑐𝑟𝑓 by 𝛿𝑐𝑟𝑓 (Line 11) with iterations. At the end of
each iteration, DEX re-trains the CRF model with the expanded seeds
(Line 12-13). When reaching the stop criterion (𝑇𝑐𝑟𝑓 < 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 ),
the bootstrapping process ends. The 𝑇𝑐𝑟𝑓 , 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 and 𝛿𝑐𝑟𝑓 are the
hyper-parameters which are set as 0.9, 0.7 and 0.01 by default.

4.3. DF-oriented language model training

The language model is an attempt to capture regularities of natural
language and amounts to estimating the probability distribution of
various linguistic units, such as words, sentences, and whole documents
[37]. We consider that there are linguistic regularities within words

7 All the examples in our study are written in Chinese originally, we
manually translate it to English.
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Algorithm 1 Bootstrapping Based CRF Training Algorithm
Input:
𝐷𝑠𝑒𝑒𝑑𝑠: seeds
𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 : unlabeled instances
𝑇𝑐𝑟𝑓 : the CRF confidence threshold
𝛿𝑐𝑟𝑓 : the value decreasing 𝑇𝑐𝑟𝑓
𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 : the low limit of 𝑇𝑐𝑟𝑓
Output:
𝑀𝑓𝑖𝑛𝑎𝑙: the final CRF model
1: 𝑀0 ⇐ train CRF model with 𝐷𝑠𝑒𝑒𝑑𝑠
2: 𝑖 ⇐ 1
3: while 𝑇𝑐𝑟𝑓 ≥ 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 do
4: 𝑇 ⇐ {}
5: for < 𝐹 > in 𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 do
6: < 𝐹 , 𝑌𝑝 >, 𝑐𝑟𝑓 _𝑠𝑐𝑜𝑟𝑒 ⇐ label 𝑠 using 𝑀𝑖−1, and calculate the

confidence
7: if 𝑐𝑟𝑓 _𝑠𝑐𝑜𝑟𝑒 ≥ 𝑇𝑐𝑟𝑓 then
8: 𝑇 ⇐ 𝑇 ∪

{

< 𝐹 , 𝑌𝑝 >
}

9: end if
10: end for
11: 𝑇𝑐𝑟𝑓 ⇐ 𝑇𝑐𝑟𝑓 − 𝛿𝑐𝑟𝑓
12: 𝑇 ⇐ 𝑇 ∪𝐷𝑠𝑒𝑒𝑑𝑠
13: 𝑀𝑖 ⇐ train CRF model with 𝑇
14: 𝑖 ⇐ 𝑖 + 1
15: end while
16: 𝑀𝑓𝑖𝑛𝑎𝑙 ⇐ 𝑀𝑖

when describing DFs such as word co-occurrence and word combina-
tion. Thus, DEX leverages the DF-oriented language model to estimate
the probability distribution of the words in each historical DF. With
the historical DFs, DEX trains a DF-oriented language model and used
the trained language model to determine whether an extracted phrase
is in line with the regularities within the historical DFs. The basic
assumption is that if an extracted is more consistent with the expression
law of historical DFs, it is more likely to be a DF.

Building language model instances. Given a historical DF, DEX
splits it into word sequence [𝑤1, 𝑤2,… , 𝑤𝑛], where 𝑤𝑖 is the word in
the historical DF. Each word sequence is considered as a language
model instance for training the DF-oriented language model. Second
is training DF-oriented language model. For each language model
instance [𝑤1, 𝑤2,… , 𝑤𝑛], the DF-oriented language model models the
joint probability 𝑃 (𝑤1, 𝑤2,… , 𝑤𝑛) using Eq. (3).

𝑃
(

𝑤1, 𝑤2,… , 𝑤𝑛
)

= 𝑃 (𝑤1)𝑃 (𝑤2|𝑤1)
𝑚
∏

𝑘=3

(

𝑤𝑘|𝑤𝑘−2𝑤𝑘−1
)

(3)

The DF-oriented language model is trained with the help of open-source
library Kenlm Language Model.8

4.4. Data function extraction

When a new requirement arrives, DEX extracts the candidate DFs
using the CRF model and ranks the candidates using the DF-oriented
language model. The following introduces the two sub-steps.

Extracting candidate data functions. For each sentence in the
new requirement, the trained CRF model receives its word sequence

8 https://github.com/kpu/kenlm.

https://github.com/kpu/kenlm
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representation [𝑤1, 𝑤2, . . . , 𝑤𝑚], extracts features for each word, and
returns a label sequence [𝑦1, 𝑦2, . . . , 𝑦𝑚], where 𝑦𝑖 (in the BIOES format)
is the label given to 𝑤𝑖. DEX forward scans the label sequence. Using
the labels ‘‘B’’, ‘‘I’’, ‘‘E’’ and ‘‘S’’, DEX determines the location of each
candidate DF in the word sequence. For example, given a sentence
‘‘I want to add the system reminder service on my personal page’’, the
word sequence and corresponding label sequence are shown in the
DF extraction phrase in Fig. 3. The ‘‘Sequence’’ row corresponds to
the word sequence of the sentence and the ‘‘Label’’ row represents
the corresponding label sequence. In this example, the labels ‘‘B’’, ‘‘I’’
and ‘‘E’’ correspond to the words ‘‘system’’, ‘‘reminder’’ and ‘‘service’’,
and the next sequence label ‘‘O’’ represents the corresponding word no
longer belongs to the current candidate DF. Therefore, the extracted
candidate DF is ‘‘system reminder service’’. Following the above pro-
cess, all candidate DFs could be extracted after parsing through the
labeled sequence.

Ranking candidate data functions. DEX ranks the candidate DFs
by perplexity which is a measurement of how well a probability distri-
bution or probability model predicts a sample [38]. Lower perplexity
indicates that the candidate DF is more in line with the regularities of
historical DFs. For each candidate DF, the DF-oriented language model
calculate the perplexity using Eq. (4).

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷𝐹 ) = 2−𝑃𝑙𝑚(𝐷𝐹 )⋅log𝑃𝑙𝑚(𝐷𝐹 ) (4)

After that, DEX keeps the candidate DF whose perplexity is smaller than
the perplexity threshold as the final DFs. For the perplexity threshold,
DEX also calculates the perplexity of each historical DF, ranks the
perplexities in ascending order. The perplexity threshold is determined
as 𝑄3 + (𝑄3 − 𝑄2), where 𝑄3 is the upper quartile, and 𝑄2 is the
median. The candidate whose perplexity is larger than the threshold
is considered an anomaly and removed from the final DF list.

5. Experiment design

In this section, we propose the research questions, introduce the
studied subjects, present the experimental setup and baselines, and
illustrate the measurements for evaluation.

5.1. Research questions

Our evaluation addresses the following five research questions:
RQ1: (Baseline Comparison) Can DEX outperform the state-

of-art baselines methods? To evaluate the effectiveness of DEX, we
evaluate its performance and compare it with four state-of-the-art
baselines.

RQ2: (Component Evaluation) How do bootstrapping and DF-
oriented language model contribute to DEX? To demonstrate how
the bootstrapping based algorithm and DF-oriented language model
contributions to DEX, we conduct comparative experiments to inves-
tigate the effects of the two components.

RQ3: (Hyper-parameter Sensitivity) Is DEX sensitive to hyper-
parameters? There are two sets of model parameters in DEX needing
to be well-tuned, i.e., context windows size and parameters for the
bootstrapping based algorithm. We train DEX under different model
parameters to investigate the sensitivity of the hyper-parameters for the
performance.

RQ4: (Instance Size Sensitivity) To what extent is DEX sensitive
to different instances sizes? We compare the performance of DEX un-
der different sizes of unlabeled and labeled requirements to investigate
whether the performance would decline if we decrease the number of
instance sizes.

RQ5: (Expert Review) How does DEX work in real-world appli-
cations?We conduct an FPA expert review to investigate the usefulness
of DEX in practices. we randomly sample the projects operating on the
continuously evolved business systems. The DFs extracted by DEX and
7

engineers are manually reviewed by requirement experts respectively.
Table 1
Summary of labeled and unlabeled requirements.

System ID Business field Labeled requirement Unlabeled
requirements

Requirements DFs Requirements

1 Personal loan 805 534 801
2 Merchant management 108 146 124
3 Measurement tool 88 124 72
4 Payment 68 68 60
5 Data warehouse 64 88 92
6 Cloud computing 192 208 188
7 Marketing management 88 96 92
8 Private bank 869 1053 800
9 Retail 684 782 672
10 Settlement 156 222 153
11 Foreign trade 84 111 80
12 Charter business 48 32 59
13 Innovative product 21 10 23
14 Communation platform 18 5 21
15 Joint card 94 24 92
16 Block chain 42 10 42
17 Intelligent answering 8 5 8
18 Data analysis 33 18 33
19 Anti-fraud 14 28 13
20 Business analysis 102 46 75

Total – 3586 3610 3500

5.2. Dataset

Our dataset comes from a financial company, China Merchants Bank
(CMB). CMB is the largest joint-stock commercial bank wholly owned
by corporate legal entities in China. CMB involves a large variety
of banking business areas, including debit card management, credit
card management, wealth management products, investment advisory
products, cash management, online customs tax payment, online bill
acceptance. By the end of 2019, with over 70,000 employees, CMB
had set up a service network that consists of more than 1800 branches
worldwide. To support its business, the IT department of CMB devel-
ops and maintains over 500 financial software, which involves huge
budgets and employees. Most financial software is transaction-oriented
applications with data persistence, which is well adapted to functional
sizing. CMB has utilized FPA to estimate and measure system size over
10 years. Our approach is used in the enterprise to automatically extract
DFs from requirements to support FPA. There are two corpora obtained
from CMB, i.e., requirements corpus and historical DF corpus. The two
corpora are both written in Chinese. We will introduce the two corpora
in detail.

Requirements corpus. This requirement corpus contains 7086 re-
quirements across 20 maintenance projects which were conduct be-
tween January 2018 and June 2019. The 20 maintenance projects are
from 20 distinct software systems which are continuously maintained
and evolved over the past 5 years. Meanwhile, to support function point
measurement, CMB has maintained a DF list manually. Typically, the
development teams are responsible for extracting and maintaining the
DF list, after passing the review and verification by FPA experts. This
dual effort is to ensure the quality of the DF list, avoiding reckless errors
or individual bias from the development teams. However, due to the
expensive expert-associated costs, not all requirements will go through
this labeling process. In this study, the labeled requirements corpus
contains 3586 requirements produced following the above process
(DF extraction by development teams and review by FPA experts).
The unlabeled requirements corpus contains 3500 requirements that
are not reviewed and verified by FPA experts. The details of labeled
requirements and unlabeled requirements are shown in Table 1.

Historical DF corpus. CMB manually maintains a DF dictionary
which contains all historical DFs extracted by the development teams
and verified by the FPA experts. The dictionary contains DFs involving

over 6000 projects. The historical DF corpus is built from the DF
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dictionary. To ensure that all the historical DFs had produced before the
20 projects in Table 1 were conduct, We exclude all the DFs from the
20 projects in Table 1, and randomly sample 6000 DFs before January
2018 as historical DF corpus.

5.3. Experimental setup

To answer RQ1, we randomly divide all labeled requirements into
two sets, i.e., training set (90% of the labeled requirements) and test
set (10% of the labeled requirements). For each experiment, we use
the 90% labeled requirements, all the unlabeled requirements, and
all the historical DFs to train DEX. The performance is evaluated on
the test set. The experiment is repeated 10 times. The average of 10
experiments is used as the final performance. Meanwhile, we com-
pare with four state-of-the-art baselines to investigate the advantage
of DEX. Mann–Whitney tests are conducted between DEX and four
baselines respectively to test the differences. In addition, we leverage
the Scott-Knott Test [39] to rank the performance of DEX and baseline
approaches.

To answer RQ2, we conduct the experiments under different set-
tings:

• CRF: We remove the bootstrapping based algorithm and the
DF-oriented language model from DEX. Under this setting, the
labeled requirements are randomly divided into the training set
and test set in the ratio of 9:1. We train the CRF model only using
the training set and evaluate the model using the test set. This
setting is used as the comparison benchmark.

• CRF + Bootstrapping: We remove the DF-oriented language
model from DEX, i.e., only using the bootstrapping based algo-
rithm to train the CRF model. Under this setting, we divide the
labeled requirement into the training set and test set by the ratio
of 9:1. We train the CRF model using 90% labeled requirements
and all the unlabeled requirements and evaluate the performance
on the test set.

• CRF + Bootstrapping + LM: the complete steps of DEX. Under
the setting, we divide the labeled requirement into the training
set and test set by the ratio of 9:1. We use the 90% labeled
requirements, all the unlabeled requirements to train the CRF
model. Then, we use all the historical DFs to train the DF-oriented
language model to rank the candidates extracted by the CRF
model. Finally, we evaluate the performance on the test set.

For each setting, the experiment is repeated 10 times. Mann–Whitney
tests are conducted to test the differences between the settings.

To answer RQ3, there are two sets of parameters needing to be
well-tuned: (1) context window size 𝑛; (2) 𝑇𝑐𝑟𝑓 (the CRF confidence
threshold, in the range of [0,1]), 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 (the low limit of 𝑇𝑐𝑟𝑓
in the rage of [0, 𝑇𝑐𝑟𝑓 ]) and 𝛿𝑐𝑟𝑓 (the value decreasing 𝑇𝑐𝑟𝑓 ) in the
bootstrapping based algorithm. We adopt a greedy strategy to tune the
two sets of parameters. First, we set three bootstrapping parameters as
constant (𝑇𝑐𝑟𝑓 = 0.90, 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 = 0.70 and 𝛿𝑐𝑟𝑓 = 0.01), and tune
the context window size 𝑛 from 1 to 10 by the steps of 1. The context
window size 𝑛 is determined as the value with the best performance.
Second, we investigate different combinations of three bootstrapping
parameters. We set the context window size 𝑛 as constant, and use 15
combinations of bootstrapping parameters.

Table 2 shows the 15 combinations, where combination 1-5 aim to
tune the 𝑇𝑐𝑟𝑓 , combination 6-10 aim to tune 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 and combina-
tion 11–15 intend to tune 𝛿𝑐𝑟𝑓 . Specifically, in the bootstrapping based
algorithm, due to the small number of seeds, if a large number of noisy
samples are added to the training set in the first few iterations, it will
cause disastrous performance degradation. Thus, we set the candidate
bootstrapping parameter 𝑇𝑐𝑟𝑓 as [1.00 (c1), 0.90 (c2), 0.80 (c3), 0.70
(c4), 0.60 (c5)] to ensure that highly reliable instances are added into
training set in the beginning of the bootstrapping process. As for the
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𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 , it controls the lower confidence limit of instances added
Table 2
The 15 combinations of bootstrapping parameters.

Combination 𝑇𝑐𝑟𝑓 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 𝛿𝑐𝑟𝑓
c1 1 0.5 0.01
c2 0.9 0.5 0.01
c3 0.8 0.5 0.01
c4 0.7 0.5 0.01
c5 0.6 0.5 0.01
c6 0.9 0.8 0.01
c7 0.9 0.7 0.01
c8 0.9 0.6 0.01
c9 0.9 0.5 0.01
c10 0.9 0.4 0.01
c11 0.9 0.7 0.20
c12 0.9 0.7 0.15
c13 0.9 0.7 0.10
c14 0.9 0.7 0.05
c15 0.9 0.7 0.01

to the training set. We consider that a larger value (larger than 0.8)
will result in an ineffective expansion of the training set, and a smaller
value (smaller than 0.4) will introduce more noise. Therefore, we set
the candidate 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 values as [0.80 (c6), 0.70 (c7), 0.60 (c8),
0.50 (c9), 0.40 (c10)] for parameter tuning. As for 𝛿𝑐𝑟𝑓 , it control the
iteration numbers. In order to achieve the balance of model perfor-
mance and time efficiency, we empirically set the candidate 𝛿𝑐𝑟𝑓 values
as [0.20 (c11), 0.15 (c12), 0.10 (c13), 0.05 (c14), 0.01 (c15)] For each
experiment, we randomly divide all labeled requirements into two sets,
i.e., training set (10% labeled requirements) and test set (90% labeled
requirements). We train DEX using the 10% labeled requirement, all
the unlabeled requirements, and all the historical DFs, and evaluate
the performance on the test set. For each parameter combination, the
experiment is repeated 10 times, and the average of the 10 experiments
is considered as the final performance.

To answer RQ4, we train DEX with different volumes of unlabeled
and labeled requirements, and evaluate corresponding performance.
We conduct two settings to evaluate the sensitivity of unlabeled and
labeled requirements respectively. First, we use 90% randomly divided
labeled requirements to train the CRF model, and all historical DFs to
train the DF-oriented language model. The performance under differ-
ent sizes of unlabeled requirements is evaluated using the remaining
10% labeled requirements. Second, we take the number of unlabeled
requirements and historical DFs as constant, and randomly sample K%
labeled requirements as seeds for training and remaining (100-K)%
labeled requirements for evaluation. We set K as 10, 20, 30, . . . , 90.
Both settings are repeated 10 times respectively, and the average of 10
experiments is used as the final performance.

To answer RQ5, an expert review is assigned and conducted in
September 2019 to evaluate the usefulness of DEX in the real-world
application scenario. With the support of CMB, we apply DEX in 11
new projects, and compare with results produced following the manual
labeling process, as introduced in Section 5.2. The process of the expert
review is illustrated in Fig. 4. Specifically, the user study follows five
steps: (1) first, we obtain the new requirements of the 11 projects
and apply DEX to extract the DFs automatically; (2) next, for each
project, CMB independently collects DFs extracted by corresponding
development teams; (3) then, we also automatically extract the DFs
from the 11 projects using DEX; (4) a certified FPA expert, who has
been working on FPA for more than 5 years, manually reviewed the
requirements and the DFs extracted by development teams and DEX
respectively; (5) finally, the evaluation metrics are calculated and
considered as expert review results.

5.4. Baselines

The following introduces the four baseline approaches.
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Fig. 4. The process of expert review.
Baseline 1-AERGT [13]: It is the state-of-the-art approach to au-
tomatically extract glossary terms from requirements. AERGT is a
heuristics-based approach that does not require the training process and
has achieved promising performance in the Satellites and embedded
system domains. Following the steps introduced in AERGT, we firstly
extract the candidate noun phrases from labeled requirements using the
text chunking with the help of Standford CoreNLP. Then, we refine the
candidates following the linguistic rules introduced in AERGT.

Baseline 2-CNER [11]: It is a supervised learning-based approach,
which achieves promising performance for the general entity extraction
task. It automatically detects word- and character-level features using
a hybrid bidirectional LSTM and CNN architecture, eliminating the
need for most feature engineering We make use of the implementation
published on the Github,9 and train the network using the labeled
requirements.

Baseline 3-ACDO [33]: It is a semi-supervised learning-based ap-
proach to automatically extract domain-specific glossary terms from
code documents. It also aims at building a machine learning model with
insufficient labeled data. ACDO takes the glossary term as a sequence
tagging task and also utilizes a bootstrapping based algorithm to train
an LSTM-CRF model. Following the approach, we use the labeled
requirements as the initial training samples and train an initial LSTM-
CRF model. After that, we implement the iterative process introduced
in ACDO to expand training samples from unlabeled requirements and
retrain the CRF model until reaching the stop criteria.

Baseline 4-RENE [12]: It is our previous study to extract entities
from requirements. RENE leverages the LSTM-CRF network for entity
extraction, and employs a transfer learning framework to overcome the
challenge of limited labeled data. There are two corpora for training
RENE, i.e., general corpus and domain-specific requirements corpus
including unlabeled requirements and labeled requirements. The un-
labeled requirements and labeled requirements are the same as the
requirements corpus in this paper (details in Table 1). Compared with
DEX, RENE leverages extra 12,000 Wikipedia articles as a general
corpus to pre-train the embedding layer and LSTM layer in the LSTM-
CRF network. We use RENE as a baseline to investigate whether DEX
outperforms RENE in the terms of extraction performance (details in
Section 6.1), training cost (details in Section 6.1) and required data
volume (details in Section 6.4).

5.5. Evaluation metrics

For all the experiments, we use three commonly-used measurements
to evaluate the performance, i.e., Precision, Recall, F1 [40]:

9 https://github.com/kamalkraj/Named-Entity-Recognition-with-
Bidirectional-LSTM-CNNs.
9

• Precision: the percentage that the DFs returned by DEX that are
correct.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑎𝑙𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
(5)

• Recall: the percentage of the ground truth DFs returned by DEX.

𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑎𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
(6)

• F1: is the harmonic mean of Precision and Recall.

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(7)

Please note that, if an extracted DF is the same as anyone’s ground truth
DF in the requirement, it is considered as a correctly extracted DF.

6. Results

This section reports the analysis of the achieved results aiming at
answering the five research questions.

6.1. Baseline comparison

Fig. 5 shows the box-plot comparison of DEX with four baselines.
The results show that DEX reaches 84% precision, 80% recall, 82% F1
on average, and outperforms all four baselines. The details of average
precision, recall, and F1 scores of all five approaches are listed in
Table 3, along with the time cost of training the model (running on
the personal computer with I7-8700K CPU, 32 GB memory, and GTX
2060 GPU). The numbers in the brackets are the differences compared
to DEX. The ‘‘∗’’ symbol suffixed with the number indicates that the
difference is significant (the significant level at 0.05). In general, DEX
could reach 84% precision, 80% recall, and 82% F1. Moreover, we
compare the performances of DEX and other baseline approaches using
Scott-Knott Test (the significant level at 0.05). The performances from
high to low are as such sequence: DEX, RENE, ACDO, CNER and
AERGT. The results indicate that DEX outperforms all four baseline
approaches with the least training cost. In the following, we compare
DEX with four baselines respectively.

First, we compare DEX with AERGT. As for precision, the perfor-
mance of AERGT is worse than DEX. It is due to that AERGT is a
linguistics-based approach, and it extracts all noun phrases that match
the linguistic rules no matter whether the noun phrases are DFs or not.
Considering that the DFs describe the functional components in require-
ments, not all the noun phrases in requirements are DFs. For example,
when processing a requirement ‘‘As a credit card user, I want to receive
the bill reminder message on Android 9.0, so that I could pay back my credit
card on time’’. AERGT extracts not only the DF ‘‘bill reminder message’’
but also regular terms such as ‘‘credit card’’, ‘‘Android 9.0’’. It indicates
that the training process is necessary to distinguish which ones of them

https://github.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
https://github.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
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Table 3
The results of baseline comparison.
Approach Precision Recall F1 Training cost (min)

DEX 84% 80% 82% 31 (CRF+Language Model)
AERGT 46% (−38%*) 60% (−20%*) 51% (−31%*) –
CNER 56% (−28%*) 53% (−27%*) 55% (−27%*) 114
ACDO 64% (−20%*) 69% (−11%*) 67% (−15%*) 248
RENE 79% (−5%*) 81% (+1%) 80% (−2%) 1394
Fig. 5. The Performances of DEX and baselines.

are DFs, and the learning-based approaches are the better choice to
achieve promising precision. As for the recall, DEX also outperforms
AERGT, which indicates that DEX could retrieval more DFs than AERGT
on average. The possible reason is that AERGT does not perform well
for the domain-specific DFs which are the out-of-vocabulary words for
the general natural language processing techniques. Specifically, the
DFs are typically named according to business knowledge. AERGT is
based on the noun chunking [41], a general natural language pro-
cessing technique to discover noun phrases from texts, and produces
parsing errors when handling DFs. As a result, some DFs cannot be
extracted correctly, which affects the recall. DEX, which is built on the
domain-specific contexts, could take not only terms themselves but also
contextual information into consideration. Compared with a DF itself,
it is easier to determine the boundary of the DF through contextual
information. Thus, DEX could handle the issue better.

CNER is a deep learning approach, which shows poor performance,
mainly due to the limited labeled data. Although ACDO also utilizes
the bootstrapping based algorithm, DEX also outperforms ACDO. It is
mainly due to two reasons: (1) ACDO utilizes the LSTM-CRF network
that is a deep learning model, and it involves more model parameters
to be trained. When there are few labeled data, the network still could
not get effective training even using the bootstrapping based algorithm;
(2) DEX uses an extra DF-oriented language model to rank the extracted
candidates, and the evaluation results show that DEX could effectively
filter out the irrelevant phrases extracted by the model (details in
Section 6.2).

Compared with our previous RENE, DEX could increase 5% preci-
sion. Although the recall drops by 1%, the overall performance of DEX
increases 2% in F1. Similarly, RENE also models the extraction as the
sequence tagging task, and leverages the transfer learning framework
[42] to boost the performance using general corpus and unlabeled
requirements. Therefore, it also achieves promising performance in
DF extraction. However, RENE is based on the LSTM-CRF network
which is a deep learning model. When reducing the number of la-
beled requirements, the performance of RENE sharply declines and the
advantage of DEX is more obvious. Specifically, when reducing the
amounts of labeled requirements and unlabeled requirements to 361
10
Table 4
Summary of performance under different training settings.

Configuration Precision Recall F1

CRF 78% 58% 66%
𝐶𝑅𝐹 + 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 68% (−10%*) 85% (+27%*) 76% (+10%*)
𝐶𝑅𝐹 + 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑝𝑖𝑛𝑔 + 𝐿𝑀 80% (+2%) 84% (+26%*) 82% (+16%*)

and 1500 respectively, RENE achieves 62% precision and 32% recall
[12]. While, DEX could also reach 76% precision and 78% recall (the
analysis is described in Section 6.4). As for the training cost, due to that
DEX adopts a simplified CRF model with hand-crafted features and a
lightweight DF-oriented language model, DEX takes much less training
time than RENE.

Summary: DEX could reach 84% precision, 80% recall and 82% F1
using limited labeled requirements. Moreover, DEX could significantly
outperform four state-of-the-art baselines with the least training cost,
which indicates the advantages of DEX.

6.2. Component evaluation

Table 4 shows the performance of DEX under different training
configurations. The figure in bracket is the difference compared to CRF.
The symbol ‘‘∗’’ is suffixed with the figure if the Mann–Whitney Test
shows the difference is significant.

We firstly compare ‘‘CRF’’ and ‘‘CRF + Bootstrapping + LM’’. The
results indicate that adding the bootstrapping and the DF-oriented
language model into the DEX could increase precision, recall, and F1
by 2%, 26%, 16% on average. It indicates that bootstrapping and DF-
oriented could significantly improve the recall without loss of precision,
to achieve a promising performance.

Then, we compare ‘‘CRF’’ and ‘‘CRF + Bootstrapping’’. The precision
of ‘‘CRF’’ is significantly larger than the precision of ‘‘CRF + Boot-
strapping’’. The decrease brought by bootstrapping indicates that some
false positive instances are added into the seed set during the iterative
process. However, the recall of ‘‘CRF + Bootstrapping’’ is significantly
larger than that of ‘‘CRF’’. Correspondingly, the F1 also increases by
10% with the help of the bootstrapping based algorithm. The result
implies that the bootstrapping based algorithm could significantly im-
prove the performance for recall and F1, with a slight decrease in
precision.

Considering that the DF-oriented language model is utilized to
rank the candidate DFs after bootstrapping. We further investigate
the performance differences before and after ranking. We find that
the precision increases 12%, and recall decreases 1% on average.
The overall performance F1 increase by 6%. This indicates that the
DF-oriented language model could effectively filter the false positive
candidates introduced by the bootstrapping based algorithm without
significantly decreasing recall, which is in line with our purpose of
using the DF-oriented language model to remove the noun phrases
which are irrelevant to DFs.

Summary: Overall, DEX could improve the performance by 2% pre-
cision, 16% recall and 12% F1. It is consistent and confirming with the
design purpose of boosting the performance by unlabeled requirements
and historical DFs. Specifically, the bootstrapping based algorithm in-
creases the recall but decreases precision. DF-oriented language model
remedies the problem to improves the precision significantly without
sacrificing recall. Totally, the recall has been significantly increased,
and the precision keeps promising performance.
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Fig. 6. The performances under different context window sizes.

6.3. Hyper-parameter sensitivity

Fig. 6 shows the performances under different context windows
sizes. In general, DEX achieves the best performance when the window
size is 4 (84% precision, 80% recall, and 82% F1). Moreover, the size
of the context window does not bring obvious changes in precision
changes, and the precision could be maintained between 78% and 84%
in most cases. But for recall, we found it dropping rapidly after 4. When
the context window is 10, recall drops to 62%. The results indicate
capturing too much context information will lead to the decline of
recall.

Using the greedy strategy introduced in Section 5.3, we set the
context window size as 4 that achieves the best performance under
different training configurations. Fig. 7 shows the performances under
different bootstrapping parameters. Specifically, Fig. 7(a) shows the
performances of c1-c5 which set 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 and 𝛿𝑐𝑟𝑓 as constants and
change 𝑇𝑐𝑟𝑓 . DEX achieves the best performance when 𝑇𝑐𝑟𝑓 is 0.9.
However, compared to other configurations, the differences are not
significant. Then, we set 𝑇𝑐𝑟𝑓 as 0.9, Fig. 7(b) shows the performances
under different configurations of 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 . Among the first three
configurations c6-c8 (𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 is larger than 0.6), there is no signifi-
cant difference in performance. After c8, the performance significantly
drops. The results indicate that too low a value 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓 results
in too many false positives added into the seed set, which leads to
performance degradation. Then, we set 𝑇𝑐𝑟𝑓 as 0.9 and 𝑙𝑜𝑤_𝑙𝑖𝑚𝑖𝑡𝑐𝑟𝑓
as 0.7 when DEX achieves the best performance. Fig. 7(c) shows the
performances under different configurations of 𝛿𝑐𝑟𝑓 . We can see that the
performance gradually increases as 𝛿𝑐𝑟𝑓 decreases. When 𝛿𝑐𝑟𝑓 is 0.01,
DEX could achieve the best performance (80% precision, 84% recall
and 82% F1). Large 𝛿𝑐𝑟𝑓 means adding more samples at once to expand
the seed set, which may introduce more bias to the seed set and results
in performance degradation.

Summary: The hyper-parameters can affect the performance of
DEX. Tuning these hyper-parameters is a key step to achieve promis-
ing model performance. The greedy strategy is an effective way to
determine the values of these hyper-parameters in practice.

6.4. Instance size sensitivity

As reported in Section 6.1, DEX could achieve promising results
using 3586 labeled requirements and 3500 unlabeled requirements.
Considering that the domain-specific requirements are difficult to ac-
cess and expensive to label, we further investigate whether DEX could
still when reducing the number of available requirements.

Fig. 8 shows the average performance under different sizes of
unlabeled requirements. The results show that the size of unlabeled
requirements has no obvious effect on the precision, but reducing the
size of unlabeled requirements will decrease the recall. Before 1500,
11
the recall curve is relatively gentle. Recall obviously decrease after
1500. The results indicate that if the number of unlabeled requirements
is reduced to less than 1500, the recall will be obviously reduced.
Therefore, 1500 is identified to be an acceptable point to achieve nearly
optimal model performance.

Then, we use all historical DFs and 1500 unlabeled requirements
and change the sampling sizes of labeled requirements. Fig. 9 shows
the average performances under different sizes of labeled requirements.
The results show that with the reduction of training instances, both
precision and recall will decrease. From the overall trend of accuracy
and recall, it can be observed that the decline of precision is greater
compared to recall. For precision, the results of the Mann–Whitney
Test between each pair of adjacent sizes show that precision will not
significantly decrease before 60% (2166) labeled requirements and
significantly decrease after 60%. Thus, 2166 is a reasonable number
of labeled requirements to train the CRF model in DEX. Moreover,
compared with our previous study RENE, DEX could achieve acceptable
performance with a small number of requirements. For example, DEX
could reach 76% precision and 78% recall with 361 (10%) labeled re-
quirement and 1500 unlabeled requirement, while RENE reaches 62%
precision and 32% recall with same size (361) of labeled requirements
and more (2500) unlabeled requirements [12].

Summary: In general, 1500 unlabeled requirements and 2166 la-
beled requirements are considered sufficient to train the CRF model
in DEX. Besides, DEX could still achieve promising performance using
1500 unlabeled requirements and 361 labeled requirements, which
indicates the DEX’s advantage with a small number of requirements.

6.5. Expert review

Table 5 shows the results of usefulness evaluation of DEX using the
11 industry projects. The column ‘‘Developer’’ illustrates the manually
extracted data from corresponding development teams. The column
‘‘DEX’’ shows the DFs automatically extracted by DEX, along with
its performance metrics of ‘‘precision’’ and ‘‘recall’’. The figures in
brackets indicate performance differences compared to the performance
of development teams. The results show that in the real industrial
application scenario, the quality of manual extraction is not promising
(66% precision and 70% recall). In comparison, the results of the
Mann–Whitney Test show that the differences between ‘‘Developer’’
and ‘‘DEX’’ are significant for both ‘‘precision’’ and ‘‘recall’’. The results
indicate that DEX could produce more accurate and completed DFs for
almost all the projects. By analyzing the DFs extracted by developers,
we find that the major reason for the differences is that DEX tends
to extract more complete phrases that describe the particular business
concepts, while developers tend to extract partial phrases, esp. for
rather long, business-specific DFs. For example, there is a sentence ‘‘As
a business manager, I would like to automatically load the merchant loan
information template when the merchant fills in the loan information so that
the merchant could fill in the relevant information in the specific format’’.
The DF extracted by the developer is ‘‘loan information template’’, while
the ground truth is ‘‘the merchant loan information template’’. It corre-
sponds to a loan form specific for the merchants rather than personals
in CMB. This indicates that manual labeling is prone to extracting
incomplete expressions, leading to ambiguity and affect subsequent
software development. By comparison, DEX could handle the problem
better and extract the complete DFs in practices.

Summary: When applying DEX to 11 on-going software projects, it
achieves the precision and recall both at 82% and 83% respectively for
automated DF extraction, and significantly outperform the manual ex-
traction by the developers. The results indicate that the more accurate
and complete DF list for each project could be built with the help of

DEX.
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Fig. 7. The performances under different bootstrapping parameters.
Table 5
The data functions extracted by engineers and DEX.

Project # Requirements Developer DEX

# Data function Precision Recall # Data function Precision Recall

Project-1 46 45 62% 70% 41 78% 80%
Project-2 26 26 58% 68% 22 82% 82%
Project-3 40 41 71% 78% 36 89% 86%
Project-4 19 18 67% 71% 17 82% 82%
Project-5 29 29 79% 74% 38 76% 94%
Project-6 14 15 73% 79% 15 73% 78%
Project-7 30 32 69% 71% 25 92% 74%
Project-8 51 48 58% 64% 47 83% 84%
Project-9 24 24 75% 67% 30 77% 85%
Project-10 33 33 55% 62% 30 83% 86%
Project-11 44 44 57% 63% 41 83% 85%

Average – – 66% 70% – 82% (+16%) 83% (+13%)
Fig. 8. The performance under different sizes of unlabeled requirements.

Fig. 9. The performance under different sizes of labeled requirements.
12
7. Discussion

In this section, we discuss the prospective aspects of our results,
illustrate the expectations for researches on automated FPA, highlight
lessons learned, as well as threats of the proposed approach.

7.1. How to infer the transactional functions with the data functions?

As we mentioned, the DFs are expressed as noun phrases, and the
transaction functions are described in the form of ‘‘verb + DFs’’. Given
the requirements and the extracted DFs, the key to inferring transaction
functions is identifying the corresponding operations acting on the DFs.
We randomly sample 100 requirements together with corresponding
DFs and transaction functions in Table 1, and manually investigate how
to find the operations given the DFs. There are mainly two situations.

The first one is that the DF and the corresponding operation are
written in the same sentence, and the core verb of the sentence corre-
sponds to the functional operation. This situation accounts for 89 out
of 100 sampled requirements. For example, there is a requirement ‘‘I
would like to modify billing reminder time so that I can pay on time’’..
The DF is ‘‘billing reminder time’’, and the corresponding operation
‘‘modify’’ is in the same sentence. Fig. 10 shows the part-of-speech
and dependency parsing results of the sentence returned by Stanford
CoreNLP. The part-of-speech tag ‘‘VB’’ indicates that ‘‘modify’’ is the
core verb of the sentence, and the dependency symbol ‘‘dobj’’ indicates
that the compound noun ‘‘billing reminder time’’ is the direct object
of the verb. Accordingly, we can infer that the ‘‘modify’’ is the opera-
tion acting on the DF, and the transaction function in requirement is
‘‘modify billing reminder time’’. Generally, given a DF, we can infer
the functional operation by finding the sentences containing the DF,
and parsing the core verb and syntactic dependency of the sentences.

The second one is that the core verb of the sentence containing
the DF corresponds to multiple operations due to the coarse-grained
descriptions of the requirements. For example, there is a requirement
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Fig. 10. The parsing results by Stanford CoreNLP.
‘‘As the customer manager, I would like to maintain the basic customer
information so that I could update customer information in time’’.
From the results of part-of-speech and dependency parsing, we can
find ‘‘maintain’’ is the core verb. However, there are four operations
corresponding to the requirement, i.e., ‘‘add’’, ‘‘delete’’, ‘‘modify’’, and
‘‘search’’. In this situation, the functional operations could be inferred
by building the inference rules. For the above example, the inference
rules could be built as ‘‘If ‘maintain’ is the core verb of the sentences
containing DFs, the functional operations are ‘add, ‘delete’, ‘modify’,
and ‘search’ ’’. Some association rule learning techniques [43,44] could
also be applied to automatically mine association rules of operations.
The solutions for the two situations are just our starting inspirations,
we will focus on extracting the transaction functions and evaluate the
extraction results in our future work.

7.2. Expectations for researches on automated function point analysis

After interviewing the FPA experts from our industrial partner, we
summarize the following research questions on automated FPA.

How to automatically extract functions from traditional software sys-
tem prototypes? Although we resolved the automated function extrac-
tion from requirements, there are still a large number of projects
using system prototypes that are difficult to extract functions. How
to automatically extract functions from those artifacts is still a big
challenge.

How to predict the final size of function points based on product/project
information and textual artifacts in the early phase? Our approach ad-
dresses the first step of function point counting that is the automated
extraction of DFs based on requirements. Given the DFs, FPA practi-
tioners need to analyze the complexity and system characteristics to
estimate the final size or budget for the projects, which is a complicated
and high-cost task. It will be a great help if researchers can work out
a prediction model that can analyze product/project information and
textual artifacts in the early phase, and predict the final results of the
FPA.

How to automatically review functions identified by development teams
based on FPA rules? For large organizations that use FPA standards to
assess the contributions of IT teams, the functions identified by the
development team members are likely to be overestimated or incorrect.
There is a need for an automated review approach on functions that
can prompt those inappropriate functions, such as duplicated functions,
misclassified functions on types, and so on.

7.3. Lessons learned

Dealing tasks with few labeled data. Thanks to the advances of
machine learning techniques, many related tasks have now reached im-
pressive performance [32,45,46]. However, they are mostly supervised
learning which requires massive labeled data, incurring significant
labeling effort [47]. Compared to labeled data, it is much easier to
obtain an amount of historical data without labeling. In our practice,
we found that historical unlabeled requirements are also valuable.
Besides, there are also lots of freely accessible data sources such as
Wikipedia, StackOverflow, and Github, which have been applied to
improve the performance of specific tasks such as software text retrieval
[48], requirements term extraction [13], and text classification [49].
Therefore, when we only have limited labeled resources, it is a potential
choice to consider using open corpora to improve performance.
13
Sequence modeling instead of bag-of-words modeling. There are
many software artifacts written in natural languages, such as software
requirements specifications, source code documents, issue reports, app
descriptions, and so on. When dealing with tasks such as text classifica-
tion, information retrieval, these natural language artifacts are usually
modeled using bag-of-words (BOW). BOW puts all words in a bag,
regardless of their morphology and word order, that is, each word is
independent. Considering that natural language is a natural sequence
of words, in which each word carries rich grammatical and contextual
information, it is a better choice to model the natural language articles
into sequences rather than BOW. The maximum entropy model, hidden
Markov model, and CRF are all alternatives for sequence modeling.
Besides, if there are a large number of labeled data to train the model,
recurrent neural networks like LSTM [50] and GNU [51] could also be
taken into consideration.

Handling out-of-vocabulary problem in requirements analysis.
In our practice, we found that some textual requirements are incorrectly
parsed by NLP toolkits. After analyzing the incorrect cases, we noted
that most cases are related to business terms that are named by the
company according to the specific business scenarios. It is known as
the out-of-vocabulary (OOV) problem [52] in NLP. This is due to that
the toolkits are all trained on the general corpus, such as WordNet10

and OANC11 which mainly contains a common vocabulary of terms.
Especially, the OOV problem is particularly obvious in the languages
which are not naturally segmented by spaces, such as Chinese, Korean,
and Japanese. The errors of NLP toolkits can be introduced into the
approaches built upon the general NLP techniques, which could also
influence their performance. To solve the OOV problem, almost all the
NLP toolkits have provided interfaces to import custom dictionaries
to help parse the texts. However, this solution requires lots of human
efforts to carefully review a large number of documents to ensure the
high quality of dictionaries, which is cost-consuming. Another solution
is to leverage the learning-based approaches, which are not totally built
upon NLP toolkits and have been verified to handle the OOV problem
in NLP tasks effectively [53–55].

7.4. Validity

External validity. The external threats are related to the general-
ization of the proposed approach. First, we experimented with the data
taken from CMB. The results may be different from other scenarios.
However, we train the model and evaluate the performance on the
requirements from 20 systems, which could reduce this threat. Second,
the studied subjects in this study are requirements only, which may not
be appreciated by other artifacts like app reviews and code documen-
tation. However, DEX extracts DFs from sentences and does not utilize
unique characteristics except for natural language description, which
could alleviate the threat. Third, our corpus is written in Chinese. Due
to the differences in linguistic morphology, the proposed approach may
not be suitable for other languages. While, when switching to other
languages, the method only needs to be slightly adjusted in data prepro-
cessing. For example, when dealing with English, the approach could
work after performing some preprocessing steps such as stemming each
word into its morphological root.

10 https://wordnet.princeton.edu/.
11 http://www.anc.org/data/oanc/.

https://wordnet.princeton.edu/
http://www.anc.org/data/oanc/
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Internal validity. The internal threats relate to experimental errors
nd biases. First, we evaluate the model with a few labeled require-
ents. The limited requirements for evaluation may introduce random-
ess of the performance. Second, when investigating the training cost,
e collect the training time in minutes using Python embedded timer.
he bias of collected minutes may be introduced to the training cost.
owever, we repeat each experiment 10 times and use the average of

he 10 experiments as the final performance, which could alleviate the
hreats.
Construct validity. The construct threats relate to the suitability of

valuation metrics. We use Precision, Recall and F1 as the measurement
metrics to evaluate the performance of DEX. We consider DEX could
be effectively applied to industrial practice based on the measure-
ment metrics. It would be better if we investigated the cost savings
or the effort savings to evaluate the performance of DEX. However,
the Precision, Recall and F1 are the commonly-used metrics in the
machine learning and the information retrieval fields [40]. Moreover,
we compare the DEX with state-of-the-art approaches and developers
respectively using these metrics, which could indicate the advantages
of the DEX.

Conclusion validity. The conclusion threats relate to the appropri-
ateness of the conclusion. In the RQ4, we adopt the greedy strategy and
empirically choose 15 combinations to tune the three bootstrapping
parameters. The corresponding best result of the 15 combinations is
considered as the final performance of DEX. However, the optimal
one may not exist in the 15 parameter combinations. Accordingly, the
results reported in RQ1 may not be the best performance that DEX
could achieve. However, it is impossible to enumerate all the parameter
combinations, and the adopted strategy could reach promising results.
Thus, the threat could be alleviated.

8. Conclusion

In function point analysis, extracting data functions is an important
and fundamental step. In industrial practices, the extraction is typically
performed in the manual way, which is the effort-intensive activity with
personal bias. This paper proposes a novel approach to extract data
functions from textual requirements automatically. It takes the data
function extraction as a sequence tagging problem and builds the CRF
model that could consider the contextual information for accurate data
function extraction. It adopts semi-supervised learning that can make
use of the bootstrapping based algorithm to resolve the few labeled
data issue. Besides, it builds a DF-oriented language model based on
historical data functions to improve extraction accuracy. We evaluated
the approach in the dataset from a real industrial environment. It
can reach 80% precision, 84% recall, and 82% F1 respectively, and
outperform the three state-of-the-art baselines. The results showed
that our approach could retrieve most of the accurate data functions.
Furthermore, we verified the value of unlabeled data and provided
an effective practice to make use of these data, which could be an
inspiration on how to build the model with few labeled data.

The data function extraction is the starting step for the automated
function point analysis. In the future work, we will continue to design
the approaches to automate other steps in function point analysis, such
as transactional function extraction, function type classification and
adjustment factor determination. We are closely collaborating with our
industrial partner and has deployed the related tool online. Returned
results will further validate the effectiveness, as well as guide us in
improving our approach.

CRediT authorship contribution statement

Mingyang Li: Conceptualization, Methodology, Software, Valida-
tion. Lin Shi: Writing – review & editing. Yawen Wang: Data curation,
Writing – original draft. Junjie Wang:Writing – review & editing. Qing
Wang: Writing – review & editing. Jun Hu: Writing – review & editing.
inhua Peng: Data curation, Writing – reviewing. Weimin Liao: Data

curation, Writing – reviewing. Guizhen Pi: Data curation, Writing –
14

reviewing.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Key Research and Devel-
opment Program of China under grant No. 2018YFB1403400, China
Merchants Bank, the National Science Foundation of China under grant
No. 61802374, No. 61432001, No. 61602450.

References

[1] J.E. Matson, B.E. Barrett, J.M. Mellichamp, Software development cost estimation
using function points, IEEE Trans. Softw. Eng. 20 (4) (1994) 275–287.

[2] M. Bundschuh, C. Dekkers, IFPUG Function Point Counting Rules, Springer Berlin
Heidelberg, 2008, pp. 453–482.

[3] International Organization for Standardization, Information Technology, Software
Measurement, Functional Size Measurement: Definition of Concepts, ISO/IEC,
2007.

[4] N.A.Z. Adem, Z.M. Kasirun, Automating function points analysis based on
functional and non functional requirements text, in: 2010 the 2nd International
Conference on Computer and Automation Engineering (ICCAE), Vol. 5, 2010, pp.
664–669.

[5] L. Shi, M. Li, M. Xing, Y. Wang, Q. Wang, X. Peng, W. Liao, G. Pi, H. Wang,
Learning to extract transaction function from requirements: an industrial case on
financial software, in: ESEC/FSE ’20: 28th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, ACM, 2020, pp. 1444–1454.

[6] G.C. Low, D.R. Jeffery, Function points in the estimation and evaluation of the
software process, IEEE Trans. Softw. Eng. 16 (1) (1990) 64–71.

[7] A. Hira, B.W. Boehm, Function point analysis for software maintenance, in: Pro-
ceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2016, Ciudad Real, Spain, September 8-9,
2016, 2016, pp. 48:1–48:6.

[8] M. Bundschuh, C. Dekkers, The IFPUG Function Point Counting Method, Springer
Berlin Heidelberg, 2008, pp. 323–363.

[9] S.J. Baek, J.S. Han, Y.J. Song, Security threat modeling and requirement analysis
method based on goal-scenario, in: Proceedings of the International Conference
on IT Convergence and Security 2011, 2012.

[10] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural
architectures for named entity recognition, in: NAACL HLT 2016, the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego California, USA, June
12-17, 2016, 2016, pp. 260–270.

[11] J.P.C. Chiu, E. Nichols, Named entity recognition with bidirectional LSTM-CNNs,
Comput. Sci. (2016).

[12] M. Li, Y. Yang, L. Shi, Q. Wang, J. Hu, X. Peng, W. Liao, G. Pi, Automated
extraction of requirement entities by leveraging LSTM-CRF and transfer learning,
in: IEEE International Conference on Software Maintenance and Evolution, ICSME
2020, Adelaide, Australia, September 28 - October 2, 2020, IEEE, 2020, pp.
208–219.

[13] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, Automated extraction and
clustering of requirements glossary terms, IEEE Trans. Softw. Eng. 43 (10) (2016)
918–945.

[14] T. Gemkow, M. Conzelmann, K. Hartig, A. Vogelsang, [IEEE 2018 IEEE 26th
International Requirements Engineering Conference (RE) - Banff, AB, Canada
(2018.8.20-2018.8.24)] 2018 IEEE 26th International Requirements Engineer-
ing Conference (RE) - Automatic Glossary Term Extraction from Large-Scale
Requirements, 2018, pp. 412–417.

[15] J. Lafferty, A. McCallum, F.C. Pereira, Conditional random fields: Probabilistic
models for segmenting and labeling sequence data, 2001.

[16] B. Settles, M. Craven, An analysis of active learning strategies for sequence label-
ing tasks, in: Conference on Empirical Methods in Natural Language Processing,
2008.

[17] A. Ratnaparkhi, A maximum entropy model for part-of-speech tagging, in: E.
Brill, K. Church (Eds.), Conference on Empirical Methods in Natural Language
Processing, EMNLP 1996, Philadelphia, PA, USA, May 17-18, 1996, 1996.

[18] A.B. Poritz, Linear predictive hidden Markov models and the speech signal,
in: IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP ’82, Paris, France, May 3-5, 1982, IEEE, 1982, pp. 1291–1294.

[19] T.D. Singh, A. Ekbal, S. Bandyopadhyay, Manipuri POS tagging using CRF and
SVM: A language independent approach, in: Proceeding of 6th International
Conference on Natural Language Processing (ICON-2008), 2008, pp. 240–245.

http://refhub.elsevier.com/S0950-5849(21)00213-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb1
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb2
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb3
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb4
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb5
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb6
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb8
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb8
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb8
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb10
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb11
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb12
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb13
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb14
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb15
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb16
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb17
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb18
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb18


Information and Software Technology 143 (2022) 106770M. Li et al.
[20] Z. Huang, W. Xu, K. Yu, Bidirectional LSTM-CRF models for sequence tagging,
2015, arXiv preprint arXiv:1508.01991.

[21] N. Greenberg, T. Bansal, P. Verga, A. McCallum, Marginal likelihood training of
BiLSTM-CRF for biomedical named entity recognition from disjoint label sets, in:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 2824–2829.

[22] X.J. Zhu, Semi-Supervised Learning Literature Survey, Technical Report,
University of Wisconsin-Madison Department of Computer Sciences, 2005.

[23] U. Kanimozhi, D. Manjula, A bootstrapping approach for entity linking from
biomedical literature, Polytech. Open Libr. Int. Bull. Inf. Technol. Sci. 56 (2017)
53–58.

[24] J.A. Pow-Sang, L. Gasco, A. Nakasone, A function point logic file identification
technique using UML analysis class diagrams, in: Advances in Software Engi-
neering - International Conference on Advanced Software Engineering and its
Applications, ASEA 2009 Held as Part of the Future Generation Information
Technology Conference, FGIT 2009, Jeju Island, Korea, December 10-12, 2009.
Proceedings, 2009, pp. 160–167.

[25] A.R. Irawati, K. Mustofa, Measuring software functionality using function point
method based on design documentation, Int. J. Comput. Sci. Issues 9 (3/1)
(2012) 124–130.

[26] T. Edagawa, T. Akaike, Y. Higo, S. Kusumoto, S. Hanabusa, T. Shibamoto,
Function point measurement from web application source code based on screen
transitions and database accesses, J. Syst. Softw. 84 (6) (2011) 976–984.

[27] M.A. Sag, A. Tarhan, Measuring COSMIC software size from functional exe-
cution traces of java business applications, in: Software Measurement and the
International Conference on Software Process and Product Measurement (IWSM-
MENSURA), 2014 Joint Conference of the International Workshop on, IEEE,
2014, pp. 272–281.

[28] D. Bourigault, Surface grammatical analysis for the extraction of terminolog-
ical noun phrases, in: Proceedings of the 14th Conference on Computational
Linguistics-Volume 3, Association for Computational Linguistics, 1992, pp.
977–981.

[29] A. Dwarakanath, R.R. Ramnani, S. Sengupta, Automatic extraction of glossary
terms from natural language requirements, in: 2013 21st IEEE International
Requirements Engineering Conference (RE), IEEE, 2013, pp. 314–319.

[30] P.A. Ménard, S. Ratté, Concept extraction from business documents for software
engineering projects, Autom. Softw. Eng. 23 (4) (2016) 649–686.

[31] T. Johann, C. Stanik, M. Alireza, B. Alizadeh, W. Maalej, SAFE: A simple
approach for feature extraction from app descriptions and app reviews, in:
Requirements Engineering Conference, 2017.

[32] J.R. Finkel, T. Grenager, C. Manning, Incorporating non-local information into
information extraction systems by gibbs sampling, in: Meeting on Association for
Computational Linguistics, 2005.

[33] R. Huang, E. Riloff, Inducing domain-specific semantic class taggers from
(almost) nothing, in: Meeting of the Association for Computational Linguistics,
2010.

[34] D.S. Sachan, P. Xie, E.P. Xing, Effective use of bidirectional language modeling
for medical named entity recognition, 2017, CoRR abs/1711.07908.

[35] K. Jones S, A statistical interpretation of term specificity and its application in
retrieval, J. Doc. (2004).

[36] H.J. Dai, P.T. Lai, Y.C. Chang, T.H. Tsai, Enhancing of chemical compound
and drug name recognition using representative tag scheme and fine-grained
tokenization, J. Cheminform. 7 (S1) (2015) S14.
15
[37] R. Rosenfeld, Two decades of statistical language modeling: Where do we go
from here? Proc. IEEE 88 (8) (2000) 1270–1278.

[38] P.F. Brown, V.J.D. Pietra, R.L. Mercer, S.A.D. Pietra, J.C. Lai, An estimate of an
upper bound for the entropy of English, Comput. Linguist. 18 (1) (1992) 31–40.

[39] C. Tantithamthavorn, ScottKnottESD: The scott-knott effect size difference (ESD)
test, 2017.

[40] D.M. Berry, J. Cleland-Huang, A. Ferrari, Maalej, Panel: Context-dependent
evaluation of tools for NL RE tasks: Recall vs. precision, and beyond, in:
Requirements Engineering Conference, 2017.

[41] T. Zhang, F. Damerau, D. Johnson, Text chunking based on a generalization of
winnow, J. Mach. Learn. Res. 2 (4) (2002) 615–637.

[42] S.J. Pan, Y. Qiang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
22 (10) (2010) 1345–1359.

[43] A. Inokuchi, T. Washio, H. Motoda, An apriori-based algorithm for mining
frequent substructures from graph data, in: European Conference on Principles
of Data Mining & Knowledge Discovery, 2000.

[44] H. Li, Y. Wang, D. Zhang, M. Zhang, E.Y. Chang, Pfp: parallel fp-growth for
query recommendation, in: Acm Conference on Recommender Systems, 2008.

[45] A. Di Sorbo, S. Panichella, C.V. Alexandru, J. Shimagaki, C.A. Visaggio, G.
Canfora, H.C. Gall, What would users change in my app? summarizing app
reviews for recommending software changes, in: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, 2016, pp. 499–510.

[46] W. Maalej, Z. Kurtanović, H. Nabil, C. Stanik, On the automatic classification of
app reviews, Requir. Eng. 21 (3) (2016) 311–331.

[47] V.T. Dhinakaran, R. Pulle, N. Ajmeri, P.K. Murukannaiah, App review analysis
via active learning, in: International Requirements Engineering Conference, 2018.

[48] Z. Lin, Y. Zou, J. Zhao, B. Xie, Improving software text retrieval using conceptual
knowledge in source code, in: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2017, pp. 123–134.

[49] J. Howard, S. Ruder, Universal language model fine-tuning for text classification,
2018, arXiv preprint arXiv:1801.06146.

[50] F.A. Gers, E. Schmidhuber, LSTM recurrent networks learn simple context-
free and context-sensitive languages, IEEE Trans. Neural Netw. 12 (6) (2001)
1333–1340.

[51] R. Dey, F.M. Salemt, Gate-variants of gated recurrent unit (GRU) neural net-
works, in: IEEE International Midwest Symposium on Circuits and Systems,
2017.

[52] L. Qin, Learning Out-of-Vocabulary Words in Automatic Speech Recogni-
tion (Ph.D. thesis), Citeseer, 2013.

[53] W. Ling, I. Trancoso, C. Dyer, A.W. Black, Character-based neural machine
translation, 2015, arXiv preprint arXiv:1511.04586.

[54] A. Maas, Z. Xie, D. Jurafsky, A. Ng, Lexicon-free conversational speech recog-
nition with neural networks, in: Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2015, pp. 345–354.

[55] W. Chan, N. Jaitly, Q. Le, O. Vinyals, Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition, in: 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2016, pp. 4960–4964.

http://arxiv.org/abs/1508.01991
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb22
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb23
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb24
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb25
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb25
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb25
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb25
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb25
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb26
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb27
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb28
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb29
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb30
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb31
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb32
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb33
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb33
http://arxiv.org/abs/1711.07908
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb35
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb35
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb35
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb36
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb37
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb38
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb39
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb40
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb41
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb42
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb42
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb42
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb43
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb44
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb45
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb46
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb47
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb48
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb48
http://arxiv.org/abs/1801.06146
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb50
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb51
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb52
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb52
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb52
http://arxiv.org/abs/1511.04586
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55
http://refhub.elsevier.com/S0950-5849(21)00213-5/sb55

	Automated data function extraction from textual requirements by leveraging semi-supervised CRF and language model
	Introduction
	Background
	The nature of function
	Technical background
	Sequence tagging and conditional random field
	Semi-supervised learning and bootstrapping


	Related work
	Function point analysis
	Term extraction
	Linguistics based approaches
	Learning based approaches


	Approach
	CRF instance building
	Bootstrapping based CRF training
	DF-oriented language model training
	Data function extraction

	Experiment design
	Research questions
	Dataset
	Experimental setup
	Baselines
	Evaluation metrics

	Results
	Baseline comparison
	Component evaluation
	Hyper-parameter sensitivity
	Instance size sensitivity
	Expert review

	Discussion
	How to infer the transactional functions with the data functions?
	Expectations for researches on automated function point analysis
	Lessons learned
	Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


